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Abstract

Many damage detection and system identification approaches benefit from the availability of both acceleration and

displacement measurements. This is particularly true in the case of suspected non-linear behavior and permanent

deformations. In civil and mechanical structural modeling accelerometers are most often used, however displacement

sensors, such as non-contact optical techniques as well as GPS-based methods for civil structures are becoming more

common. It is suggested, where possible, to exploit the inherent redundancy in the sensor information and combine the

collocated acceleration and displacement measurements in a manner which yields highly accurate motion data. This

circumvents problematic integration of accelerometer data that causes low-frequency noise amplification, and potentially

more problematic differentiation of displacement measurements which amplify high-frequency noise. Another common

feature of displacement-based sensing is that the high-frequency resolution is limited, and often relatively low sampling

rates are used. In contrast, accelerometers are often more accurate for higher frequencies and higher sampling rates are

often available. The fusion of these two data types must, therefore, combine data sampled at different frequencies. A multi-

rate Kalman filtering approach is proposed to solve this problem. In addition, a smoothing step is introduced to obtain

improved accuracy in the displacement estimate when it is sampled at lower rates than the corresponding acceleration

measurement. Through trials with simulated data the procedure’s effectiveness is shown to be quite robust at a variety of

noise levels and relative sample rates for this practical problem.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In the past two decades, structural health monitoring (SHM) using vibration measurements has attracted
considerable attention in the aerospace, mechanical, and civil engineering communities. In order to conduct
on-line monitoring and system identification of structural parameters, the availability of acceleration response
measurements as well as displacement response data is often required. Displacement, or deformation,
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information is particularly important when non-linear behavior and permanent deformations occur. Most
non-linear models whose parameters have physical or phenomenological interpretations are composed of non-
linear functions of the deformation displacements and velocities. In order to identify those parameters which
make up these non-linear functions of the displacements and velocities, one often needs to have access to those
signals. Typically these are however not directly available, because accelerations are most commonly
measured. Although it is common practice, for example in earthquake ground motion data releases, to
integrate accelerations to obtain velocities and again to obtain displacements this practice is fraught with
major pitfalls. This point is particularly true for causal integration schemes that would be required for
continuous monitoring setups.

Recent years have delivered tremendous advances in sensor technologies for dynamic system monitoring,
particularly for wireless applications which are promising for large civil structures. In addition, global
positioning system (GPS) receivers and the corresponding data processing is permitting newly refined accuracy
for high speed position information. With these hardware advances coupled with cost reductions, spatially
dense heterogenous sensor arrays are envisioned for large civil structures. The potential then exists to exploit
redundancy in sensor information. In this paper, the fusion of measured acceleration data with collocated
displacement data will be investigated. Based on displacement and acceleration measurements, velocity and
displacement are estimated with improved accuracy by using the Kalman filtering technique. In realistic
scenarios the measurements of displacements and accelerations are often taken at different rates, therefore, a
multi-rate Kalman filter and smoother is also developed in this paper to process such situations.

2. A review of the integration problem

The challenges of integrating acceleration to obtain estimates of the velocity and displacement can be seen in
its simplest form from the following basic equations:

_x ¼

Z
€xdtþ c1, (1)

x ¼

Z
_xdtþ c1tþ c2, (2)

where c1 and c2 are constants of integration. Notice that c1 is a spurious mean level in velocity and then
becomes a linear function in the displacement. In theory these can be removed with mean removal and
detrending, but in practice, as is explained below, spurious low-frequency error due to measurement noise still
exists within the estimated signals. Also, mean removal and detrending assumes that these quantities are truly
spurious, which would not be true in the case of actual permanent deformation occurring during the response.

2.1. Time domain integration

Following similar presentations in Hamming [1] and Worden [2], one may consider several possible
common time domain integration techniques to evaluate their relative performance. For example the third-
order corrector integration scheme is characterized by the following equation:

ynþ1 ¼ yn þ
Dt

12
ð5 _ynþ1 þ 8 _yn � _yn�1Þ. (3)

For convenience, a sampling frequency of Dt ¼ 1 s is assumed, and therefore the angular Nyquist frequency
will be p radians. Letting f n ¼ _yn, one can write the discrete transfer function, i.e. yn ¼ GðzÞf n, of the third-
order corrector integration rule as

GðzÞ ¼
ð1=12Þð5þ 8z�1 � z�2Þ

ð1� z�1Þ
. (4)

Again, repeating concepts in [1] and [2], one is ultimately interested in the accuracy of the integration scheme
whose discrete transfer function was just derived. This can be quantified as the Fourier Transform of the



ARTICLE IN PRESS
A. Smyth, M. Wu / Mechanical Systems and Signal Processing ] (]]]]) ]]]–]]] 3
estimate divided by the Fourier Transform of the exact integrated quantity (if it is available). This is then the
frequency domain transfer function between the estimate and the exact integrated signal. Denoting ‘FT’ as
Fourier Transform this is transfer function is written as:

HaccuracyðoÞ ¼
FTðestimate of integrated signalÞ

FTðexact integrated signalÞ
. (5)

Expressing z ¼ eio in order to convert the discrete time transfer function GðzÞ into a frequency domain transfer
function HðoÞ, yields

HðoÞ ¼
ð1=12Þð5þ 8e�io � e�2ioÞ

ð1� e�ioÞ
¼

4þ 2 cosoþ 3i sino
�6þ 6 cosoþ 6i sino

. (6)

If the measured signal is the general signal f ¼ eiot, the true integral should be y ¼ eiot=ðioÞ, and the estimated
output from the filter would be yest ¼ HðoÞeiot, then

HaccuracyðoÞ ¼
4þ 2 cosoþ 3i sino
�6þ 6 cosoþ 6i sino

ðioÞ. (7)

Similar accuracy transfer functions can be obtained for other common integration rules, and a comparison is
shown in Fig. 1. From this figure, one would recommend the choice of a sampling frequency, such that your
frequencies of interest are no greater than about 15% of the Nyquist frequency. One can also look at the phase
angle distortion introduced by these filters. It can be shown that all filters perform perfectly (i.e. no phase
distortion) in this regard except for the third-order corrector which has some increasing phase distortion near
the Nyquist frequency.

2.2. Noise amplification through integration

The prior discussion of integration accuracy did not include the effects of noise in the original acceleration
records. Some spurious noise Zk at each k time sample is unavoidable, either from resolution error (truncation)
or from background electrical noise in the data acquisition circuitry. Therefore, it is important to understand
what the effect of the integrators is on that extraneous noise:

ykest
¼ GðzÞðf k þ ZkÞ

¼ yk þ GðzÞZk. ð8Þ
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Fig. 1. A comparison of the magnitudes of the accuracy transfer function. The frequency axis is from zero to the Nyquist frequency. A
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The error is therefore �k ¼ ykest
� yk ¼ GðzÞZk and thus,

FTðoutput noiseÞ

FTðinput noiseÞ
¼ HðoÞ. (9)

This noise amplification is shown in Fig. 2 for each of the four integrators under consideration. This clearly
shows what is an often experienced in reality; that low-frequency noise is greatly amplified through
integration. In civil engineering applications, low-frequency spectral content is often critical, so any added and
magnified disturbances in this frequency range can considerably complicate the data analysis, and system
identification procedures. This also shows one of the key trade-offs, where previously it was concluded that
one should stay below 15% Nyquist frequency if possible, this now seems to be one of the more problematic
frequency ranges relative to the sampling rate, in that noise amplification is the greatest.

The effect of this noise amplification in many system identification approaches for non-linear system
identification is the distortion of the observed states, i.e. the velocities and displacements, and the subsequent
mis-identification of the associated model parameters.

2.3. Redundancy through displacement sensing

One reliable way of improving the accuracy of integration in the estimated displacement and velocity, is
actually to augment the sensed motion to include displacement. This is not commonly done, and admittedly this
could be quite expensive on a large scale, but the benefits are considerable. The most obvious of which is that one
can track permanent deformation over time. Such permanent deformation is, of course, often associated with
damage. This basic idea has been proposed for non-linear restoring-force mapping identification by Crawley and
O’Donnell [3], where the measurement process itself was expressed in a state-space system formulation, and the
observation error reduced through a simple error feedback approach from the control systems field. In this
paper, an alternative and improved methodology using Kalman filtering for the accurate estimation for the
displacement and velocity based on the dual acceleration and displacement measurement is explored.

3. Kalman filter formulation

Consider the case that acceleration and displacement are available to be measured. Then the measurement
process can by modeled in state-space equation form as [3]

_x

€x

� �
¼

0 1

0 0

� �
x

_x

� �
þ

0

1

� �
€xm þ

0

1

� �
Za, (10)
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z ¼ xm ¼ ½1 0�
x

_x

� �
þ Zd , (11)

where €xm and xm are the measured acceleration and displacement, Za and Zd are the associated measurement
noise of acceleration and displacement. It is assumed that Za and Zd are white noise Gaussian processes with
covariance q and r, respectively.

By introducing the state variables,

x ¼
x1

x2

" #
¼

x

_x

� �
. (12)

Eqs. (10) and (11) can be compactly written in matrix form as

_x ¼ Axþ Buþ w, (13)

z ¼ Hxþ v, (14)

where w�ð0;QÞ, Q ¼ 0
0

0
q

h i
; v�ð0;RÞ, R ¼ r. It is noted that Eqs. (13) and (14) rigorously represent the

relationships between the states, the measurements and the associated measurement noises.
If acceleration is measured at the intervals of Ta, the system equation (10) and observation equation (11)

can be discretized as

x1ðk þ 1Þ

x2ðk þ 1Þ

" #
¼

1 Ta

0 1

� �
x1ðkÞ

x2ðkÞ

" #
þ

T2
a=2

Ta

" #
uðkÞ þ

T2
a=2

Ta

" #
ZaðkÞ, (15)

zðkÞ ¼ ½1 0�
x1ðkÞ

x2ðkÞ

" #
þ ZdðkÞ. (16)

Written in compact form

xðk þ 1Þ ¼ AdxðkÞ þ BduðkÞ þ wðkÞ, (17)

zðkÞ ¼ HxðkÞ þ vðkÞ, (18)

where Ad and Bd are derived by noting that A is nilpotent (i.e. A2
¼ 0)

Ad ¼ eATa ¼ Iþ ATa ¼
1 Ta

0 1

� �
, (19)

Bd ¼

Z Ta

0

eAtBdt ¼ BTa þ
ABT2

a

2
¼

T2
a=2

Ta

" #
. (20)

The covariance matrices of the new discrete noise sequences can be obtained by [4]

Qd ¼

Z Ta

0

eAtQeA
Tt dt ¼

qT3
a=3 qT2

a=2

qT2
a=2 qTa

" #
, (21)

Rd ¼
R

Ta

. (22)

The system equation (17) and observation equation (18) together make up the state-space representation of the
formulation which a discrete-time Kalman filter can be applied in order to obtain accurate on-line estimates of
the displacement and velocity. The Kalman filter algorithm for the above system can be summarized as

Time update:

x̂ðk þ 1jkÞ ¼ Ad x̂ðkjkÞ þ BduðkÞ, (23)

Pðk þ 1jkÞ ¼ AdPðkjkÞA
T
d þQd . (24)
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Measurement update:

x̂ðk þ 1jk þ 1Þ ¼ x̂ðk þ 1jkÞ þ Kðk þ 1Þ½zðk þ 1Þ �Hx̂ðk þ 1jkÞ�, (25)

Pðk þ 1jk þ 1Þ ¼ ½I� Kðk þ 1ÞH�Pðk þ 1jkÞ, (26)

where Kalman gain Kðk þ 1Þ is given by

Kðk þ 1Þ ¼ Pðk þ 1jkÞHT½HPðk þ 1jkÞHT þ Rd �
�1. (27)

4. Multi-rate Kalman filter

When the acceleration and displacement are measured at different sampling rates, a multi-rate Kalman filter
can process the optimal estimates of the displacement and velocity. Assume the displacement measurement
sampling interval is Td , where Td=Ta ¼M, M is an integer. Since no displacement measurements are
available between the times kTd , where k is an integer, this is equivalent to optimal filtering with arbitrarily
large measurement errors [5], so R�1d ! 0 and hence K! 0. Thus, only the time update is performed and the
optimal estimate is

x̂ðk þ 1jk þ 1Þ ¼ x̂ðk þ 1jkÞ ¼ Ad x̂ðkjkÞ þ BduðkÞ, (28)

Pðk þ 1jk þ 1Þ ¼ Pðk þ 1jkÞ ¼ AdPðkjkÞA
T
d þQd . (29)

When displacement measurements are available at times kTd , both the time update and measurement update
should be performed. It is important to note that so far, as presented, this does not exploit the possible future
‘correction’ in displacement measurement as each displacement sample becomes available. Therefore,
displacement estimates can drift within the large interval Td . Thus some smoothing, albeit a non-causal
procedure is beneficial.
5. Kalman filter smoothing

For on-line estimation, Kalman filtering provides the best estimates for the state of linear systems with
additive Gaussian white noises. However, smoothing can produces a much better estimation by using
measurements beyond the time of the states being estimated. The smoothing works through a combination of
the forward Kalman filtering and backward filtering over the entire sequence of available measurements.
Therefore, smoothing cannot be used in on-line data processing. In other words, the performance
improvement is achieved at the expense of the on-line estimation. The Kalman filter smoothing can
principally be classified into three categories, i.e. fixed-interval smoothing, fixed-point smoothing, and fixed-
lag smoothing [6,7]. Fixed-interval smoothing estimates the sequence of state vectors at all sampling instants
based on all measurements. Fixed-point smoothing permits one to use the entire sequence of measurements to
estimate the state vector at a specific point. Fixed-lag smoothing is desirable when estimating the sequence of
state vectors at a fixed time lag from the current observation process based upon all measurements. The
smoothing algorithms investigated here are based on fixed-interval smoothing, however, the algorithms can
also be used as fixed-lag smoothing estimators [8,9]. Brown and Hwang [10] proposed a simple way to
implement fixed-lag smoothing by using Rauch–Tung–Striebel (RTS) algorithm [11] for fixed-interval
smoothing in fixed-lag smoothing. This approach is accomplished by first filtering up to the current
measurement and then sweeping back a fixed number of steps with the RTS algorithm. If the number of
backward steps is small, then the state estimation is near ‘on-line’. The number of backward steps S ¼ 5 is
used for all examples of smoothing in the later applications. The smoothed estimates X̂ðkjNÞ over ð0;NÞ can be
obtained by

X̂ðkjNÞ ¼ X̂ðkjkÞ þ FðkÞ½X̂ðk þ 1jNÞ � X̂ðk þ 1jkÞ�, (30)
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where X̂ðkjkÞ is the updated state estimates from the forward multi-rate Kalman filter, and the smoothing gain
FðkÞ is given by

FðkÞ ¼ PðkjkÞAT
dP
�1ðk þ 1jkÞ (31)

and k ¼ N � 1;N � 2; . . . ; 0:

6. Applications

6.1. The swept-sine signal with an additional linear trend

Consider first an example of an analytically defined response signal: a swept-sine signal with an additional
linear trend [12]. The time-history for the displacement can be expressed:

xðtÞ ¼ sinð½aþ dt�tÞ þ bt. (32)

Through direct differentiation one can obtain velocity and acceleration time-history

_xðtÞ ¼ bþ ðaþ 2dtÞ cosð½aþ dt�tÞ, (33)

€xðtÞ ¼ 2d cosð½aþ dt�tÞ � ðaþ 2dtÞ2 sinð½aþ dt�tÞ. (34)

The first, and most important observation is, that the linear drift term is undetectable in the acceleration term.
Therefore, no matter how accurate an acceleration sensor, it will not detect such a drift. Since the exact
analytical time-histories of the displacement and velocity are known, it is possible to evaluate the performance
of the proposed estimation scheme. In addition, the swept-sine signal is also a good signal to choose, because
one can determine if methods are susceptible to changes in signal frequency content.

Here the acceleration sampling rate was chosen to be 1000 samples/s, i.e. the Nyquist frequency is 500Hz.
Such a high sampling rate is generally not required for most civil engineering applications, however it does
offer some potential benefits for statistical methods which require a lot of averaged data, and also, it has the
advantage that it can capture very high-frequency impact-like sudden response changes which might be
associated with damage. (Such impact-like pulses were observed in the wind-shoe (deck-tower connection)
area of the Vincent Thomas Bridge due to earthquake response during the 1994 Northridge earthquake [13]).
For the multi-rate estimation case to be considered, the displacement measurement rate is 100Hz, i.e. M ¼ 10.
A separate white noise process with 10% RMS noise-to-signal ratio is superimposed to both the exact
analytical displacement and acceleration signals. These noise levels are reasonably realistic working
environments for civil engineering applications.

Figs. 3 and 4 show the multi-rate Kalman filtering and Kalman filter smoothing results, respectively. To
provide a sense of the shape and spectral content of the relative error, Figs. 5 and 6 show the multi-rate
filtering errors and Kalman filter smoothing errors on a magnified scale. It can be seen that the schemes
provide excellent estimates of both the velocity and the displacement including tracking of the drift term. In
these multi-rate cases the RMS error is on the order of 2.5% for both signals. Note the RMS error for the
single-rate case (i.e. when M ¼ 10, and in this case both with a sample rate of 100Hz) is also relatively low, in
the range of 4–11% for the displacement and velocity, respectively, and in a similar comparison plot to Figs. 3
or 4, the estimated and exact signals would also appear nearly indistinguishable. This single-rate case is the
worst case because in the multi-rate cases additional acceleration information is available. In all cases the
linear trend is correctly identified in the displacement.

6.2. SDOF hysteretic system simulation

Here we consider a SDOF non-linear hysteretic Bouc–Wen system subject to recorded ground motion from
the 1999 Chi–Chi earthquake.

m €xðtÞ þ c _xðtÞ þ krðtÞ ¼ �m €xgðtÞ, (35)



ARTICLE IN PRESS

0 2 4 6 8 10 12 14 16 18 20
− 1

− 10

− 20

0

1

2

3

4

time (sec)

0 2 4 6 8 10 12 14 16 18 20
time (sec)

D
is

p.

RMS,Dis = 10%,Acc = 10%, Acc Sampling = 1000Hz, Disp Sampling = 100

0

10

20

30

V
el

o.

Simulated
Estimated

Fig. 3. Multi-rate Kalman filtering, M ¼ 10.

0 2 4 6 8 10 12 14 16 18 20
− 1

− 10

− 20

0

1

2

3

4

time (sec)

0 2 4 6 8 10 12 14 16 18 20

time (sec)

D
is

p.

Smoothed Results,Dis = 10%, Acc = 10%, Acc Sampling = 1000Hz, Disp Sampling = 100

0

10

20

30

V
el

o.

Simulated
Smoothed

Fig. 4. Kalman filter smoothing, S ¼ 5.

A. Smyth, M. Wu / Mechanical Systems and Signal Processing ] (]]]]) ]]]–]]]8



ARTICLE IN PRESS

0 2 4 6 8 10 12 14 16 18 20
− 0.2

− 0.15

− 0.1

− 0.05

0

0.05

0.1

0.15

time (sec)

0 2 4 6 8 10 12 14 16 18 20
time (sec)

D
is

pl
ac

em
en

t e
rr

or

Multirate estimation error

− 1

− 0.5

0

0.5

1

V
el

oc
ity

 e
rr

or

Fig. 5. Multi-rate estimation error of displacement and velocity.

0 2 4 6 8 10 12 14 16 18 20
− 0.1

− 0.5

− 1

− 0.05

0

0.05

0.1

1

0.5

0

0.15

time (sec)

0 2 4 6 8 10 12 14 16 18 20
time (sec)

D
is

pl
ac

em
en

t e
rr

or
V

el
oc

ity
 e

rr
or

Smoothed multirate estimation error

Fig. 6. Smoothed multi-rate estimation error of displacement and velocity.

A. Smyth, M. Wu / Mechanical Systems and Signal Processing ] (]]]]) ]]]–]]] 9



ARTICLE IN PRESS
A. Smyth, M. Wu / Mechanical Systems and Signal Processing ] (]]]]) ]]]–]]]10
where rðtÞ is the Bouc–Wen hysteretic component with

_r ¼ _x� bj _xjjrjn�1r� g _xjrjn. (36)

Here m ¼ 1, c ¼ 0:3, k ¼ 9, b ¼ 2, g ¼ 1, n ¼ 2. The sampling frequency of the recorded Chi–Chi earthquake
acceleration is 250Hz. The Chi–Chi earthquake signal was first filtered with a low-frequency cutoff of 0.03Hz
and the high-frequency cutoff of 50Hz [14]. A duration of 40 s of the earthquake record was adopted in this
example. The system responses of displacement and the acceleration were obtained by solving the ODE
equation (35). The sampling frequency for the measurement of acceleration and displacement is 250Hz. For
the multi-rate estimation problem, the slower displacement sampling frequency is 25Hz. A white noise process
with 10% RMS noise-to-signal is superimposed to the simulated displacement and acceleration responses.
Notice here that the displacement response has a drift component which would be very important to detect if
one were interested in identifying a behavioral model, or simply for detecting permanent offset at the end of
the response.

As in the previous case, the single rate Kalman filter estimates of velocity and displacement can be seen to be
relatively accurate (with about 11% and 5% respective RMS error), and the corresponding plot is omitted
here. Figs. 7 and 8 show the multi-rate Kalman filtering and smoothing results for the estimated velocity and
displacement. Again, as can be seen, the proposed techniques estimate the velocity and displacement very well
with on the order of 3.8% and 2.8% respective RMS error.
6.3. SDOF linear system simulation

In this example we consider the following SDOF linear system subject to same Chi–Chi earthquake
acceleration excitation.

m €xðtÞ þ c _xðtÞ þ kx ¼ �m €xgðtÞ, (37)
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where m ¼ 1, c ¼ 0:3, k ¼ 9. The excitation signal was the same in the hysteretic case. The sampling frequency
of Chi–Chi earthquake acceleration is 250Hz. First we use Newmark’s method to solve the ODE equation
(37) to obtain the system responses of displacement and the acceleration.

6.3.1. Base case

The measurement sampling frequency of acceleration and displacement is 250Hz. For the multi-rate
estimation problem, the slow displacement sampling frequency is 25Hz. A white noise process with 10% RMS
noise-to-signal ratio is superimposed to the simulated displacement and acceleration.

Both the single-rate and multi-rate Kalman filter estimates of velocity and displacement were
determined. A sample of the multi-rate (without smoothing) performance is shown in Fig. 9. The estimation
errors are shown in Fig. 10, and although not shown here, those for the smoothed case are of a similar order of
magnitude, i.e. about 2.5% and 1.5% RMS levels of the displacement and velocity signals, respectively,
but smoother.

6.3.2. Effect of measurement noise level

A 10% measurement noise level is considered to be within a normal working range for civil
engineering applications. However, in order to evaluate the robustness of the proposed schemes
to noise level, high noise level contaminated measurements of the acceleration and displacement were also
considered.

In addition to the base case of 10% added noise, Table 1 provides a comparison of the RMS error obtained
using the single-rate (25Hz), multi-rate and multi-rate Kalman filter technique with smoothing for noise levels
of 20% to 50%, respectively. It is observed from the table that the proposed techniques are very robust despite
high levels of noise. Note that RMS noise levels of 50% are considered high for civil applications, and this
would normally pose significant processing challenges.
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Table 1

Normalized RMS error of estimates for different noise levels

Estimation Noise level

10% 20% 30% 40% 50%

Single rate

Displacement NRMS% 4.85 8.63 13.41 15.98 19.82

Velocity NRMS% 8.10 10.60 16.17 18.93 21.96

Multi-rate

Displacement NRMS% 2.85 6.10 9.20 11.35 15.65

Velocity NRMS% 1.76 3.61 5.84 7.40 10.49

Smoothing

Displacement NRMS% 2.32 4.80 6.97 8.52 12.11

Velocity NRMS% 1.58 3.11 5.01 6.43 9.25

For the multi-rate cases M ¼ 10.

Table 2

Normalized RMS error of estimates for different displacement sampling rates

Estimation M

10 20 50 100

Single rate

Displacement NRMS% 4.85 8.73 13.86 17.87

Velocity NRMS% 8.10 17.09 38.02 73.60

Multi-rate

Displacement NRMS% 2.85 3.82 6.30 6.43

Velocity NRMS% 1.76 2.24 2.42 2.74

Smoothing

Displacement NRMS% 2.32 2.49 4.07 3.53

Velocity NRMS% 1.58 1.74 1.70 1.64

Note ‘single rate’ denotes the fact that both acceleration and displacement measurements are made at a slow rate, e.g. M ¼ 10 implies here

25Hz.
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6.3.3. Effect of displacement sampling rate

It is common for the displacement measurement rate to be slower than the acceleration sampling rate. Also,
if the displacement is measured by a GPS system, it is common that GPS measurements can be somewhat
intermittent. In such a case, multi-rate Kalman filtering and smoothing will improve the estimation accuracy.
In order to evaluate the capability of the proposed methods to deal with the multi-rate data processing
problem, the displacement measurement is purposely made at a very slow rate. Here for the multi-rate cases
considered the acceleration sampling rate is always 250Hz, however, the displacement measurement rate is set
to 12.5, 5 and 2.5Hz, i.e. M ¼ 20, 50 and 100, respectively. All the measurements of displacement and
acceleration are simulated and white noise with a 10% RMS level is superimposed to model the measurement
noise. A summary table of the normalized RMS errors of the estimated signals versus the exact signals is given
in Table 2.

Fig. 11 shows the estimates of the velocity and displacement for one of the cases considered. Here both
acceleration and displacement are measured at a single (slow) rate of 5Hz. Despite this severe limitation the
normalized RMS error as shown in Table 2 is on the order of 14% and 38% for the displacement and velocity,
respectively. When the high rate (250Hz) acceleration data is combined with the 5Hz sampled displacement
and one also uses the proposed smoothing step, one can see a drastic improvement in signal estimation in
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Fig. 12, with normalized RMS error of about 1.7% and 4%, respectively. The estimated results demonstrate
that the proposed techniques can track the velocity and displacement very well even for the very slow
displacement measurement sample rates.

In order to appreciate the performance of the proposed approach in a general non-dimensionalized manner
Figs. 13–16 show the normalized RMS error surfaces of the multi-rate Kalman filtering and with smoothing
with respect to the variation of the displacement measurement rate f d and system natural frequency f N for this
example. The acceleration measurement rate is fixed at 250Hz. It can be seen that the proposed schemes are
quite robust, providing relatively low RMS error even for extreme ratios of acceleration sampling rate f a to
displacement sampling rate f d and ratios of the acceleration sampling rate to system natural frequency f N . For
example when lf ¼ f a=f N ¼ 50p and M ¼ 100 one still has only on the order of 7% and 3% RMS error in the
velocity and displacement error, respectively, when the smoothing procedure is included.

6.4. Extension beyond low-sample rate Nyquist frequency in displacement

According to Nyquist–Shannon sampling theorem, the highest frequency that we can expect to be present in
the sampled signal is the Nyquist frequency. The Nyquist frequency is the bandwidth of a sampled signal, and
is equal to half the sampling frequency of that signal. As previously mentioned displacements are often
measured at a relatively low sampling frequency. Under this scenario, it is possible that the signal frequency
content that is higher than the Nyquist frequency and will be impossible to detect from the low sampling rate
displacement measurement. This problem can be also benefit from the developed multi-rate filtering and
smoothing technique.

Consider, for example, the following analytically defined non-stationary acceleration response signal:

€xðtÞ ¼ teat½sinðo1tÞ þ b sinðo2tÞ�. (38)

Through direct integration one can obtain analytical solutions of velocity and displacement time-histories.
Here the acceleration sampling rate was chosen to be 100Hz, i.e. the Nyquist frequency is 50Hz; and the
displacement measurement rate is 5Hz, i.e. the Nyquist frequency is 2.5Hz and M ¼ 20. o1 and o2 were
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Fig. 15. Normalized displacement RMS error for smoothed multi-rate estimation.
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chosen to be p and 8p so that the signal contains frequencies of 0.5 and 4Hz, i.e. one is higher and the other is
lower than the Nyquist frequency of the displacement measurement. The measurement noise level considered
here is 10%. Through the developed multi-rate Kalman filtering and smoothing technique, the comparison of
power spectral density (PSD) obtained using Welch’s method for measured and smoothed displacement is
shown in Fig. 17. It clearly shows that the frequency of 4Hz which is higher than Nyquist frequency can be
directly detected from the smoothed displacement, while, it is undetectable from the low sampling rate
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displacement measurement. It is interesting to note, that in the PSD of the original noise-contaminated low
sampled displacement the 4Hz component aliases as a 1Hz peak as expected. This aliasing problem is
obviously also circumvented by producing the estimated high sample rate displacement.

7. Conclusions

AKalman filtering and smoothing technique, which is capable of dealing with multi-rate estimates, has been
investigated to accurately estimate the velocity and displacement from noise contaminated measurements of
acceleration and displacement. The results show that the proposed schemes can estimate the velocity and
displacement very accurately even with a high noise level and very slow displacement measurement. The multi-
rate aspect permits a relatively low sampling rate for the displacement measurement which is shown to be
sufficient to correct what might otherwise be low-frequency integration errors. In short it permits each sensor
type to play to its inherent strengths; accelerometers will more easily detect higher frequencies, and low-
frequency displacements can be detected by LVDT’s, optical or GPS-based sensing which sometimes are
limited to lower sampling rates.
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